Fine-Tuning Legal AI Models: Contract Review and Legal Research Training Course
Fine-tuning is the process of adapting pre-trained NLP models to specialized domains such as law and legal documentation.
This instructor-led, live training (online or onsite) is aimed at intermediate-level legal tech engineers and AI developers who wish to fine-tune language models for tasks like contract analysis, clause extraction, and automated legal research in legal service environments.
By the end of this training, participants will be able to:
- Prepare and clean legal documents for fine-tuning NLP models.
- Apply fine-tuning strategies to improve model accuracy on legal tasks.
- Deploy models to assist with contract review, classification, and research.
- Ensure compliance, auditability, and traceability of AI outputs in legal contexts.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Đề cương khóa học
Introduction to Legal AI and Fine-Tuning
- Overview of legal tech and its evolution
- Applications of NLP in law: contracts, case law, compliance
- Benefits and limitations of using pre-trained models in legal domains
Preparing Legal Data for Fine-Tuning
- Types of legal documents: contracts, terms, case law, statutes
- Text cleaning, segmentation, and clause extraction
- Annotating legal data for supervised learning
Fine-Tuning NLP Models for Legal Tasks
- Choosing a pre-trained model: BERT, LegalBERT, RoBERTa, etc.
- Setting up a fine-tuning pipeline with Hugging Face
- Training on legal classification and extraction tasks
Contract Review Automation
- Detecting clause types and obligations
- Highlighting risk terms and compliance issues
- Summarizing long contracts for quick review
Legal Research Assistance with AI
- Information retrieval and ranking for case law
- Question answering on statutes and regulations
- Building a legal document chatbot or assistant
Evaluation and Interpretability
- Metrics: F1, precision, recall, accuracy
- Model explainability in high-stakes legal contexts
- Tools for clause-level confidence scoring and auditing
Deployment and Integration
- Embedding models in legal research platforms or review tools
- APIs and interface considerations for law firm use
- Maintaining privacy, version control, and update workflows
Summary and Next Steps
Requirements
- An understanding of natural language processing fundamentals
- Experience with Python and machine learning libraries such as Hugging Face Transformers
- Familiarity with legal texts and basic legal document structures
Audience
- Legal tech engineers
- AI developers for law firms
- Machine learning professionals working with legal data
Open Training Courses require 5+ participants.
Fine-Tuning Legal AI Models: Contract Review and Legal Research Training Course - Booking
Fine-Tuning Legal AI Models: Contract Review and Legal Research Training Course - Enquiry
Fine-Tuning Legal AI Models: Contract Review and Legal Research - Consultancy Enquiry
Consultancy Enquiry
Provisional Upcoming Courses (Require 5+ participants)
Related Courses
Advanced Techniques in Transfer Learning
14 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này tại Việt Nam (trực tuyến hoặc tại chỗ) dành cho các chuyên gia học máy nâng cao, những người muốn làm chủ các kỹ thuật học chuyển giao tiên tiến và áp dụng chúng vào các vấn đề phức tạp trong thế giới thực.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu các khái niệm và phương pháp học chuyển giao nâng cao.
- Triển khai các kỹ thuật thích ứng chuyên biệt cho các mô hình được huấn luyện trước.
- Áp dụng học liên tục để quản lý các tác vụ và tập dữ liệu đang phát triển.
- Làm chủ kỹ thuật tinh chỉnh đa tác vụ để nâng cao hiệu suất mô hình trên nhiều tác vụ.
Continual Learning and Model Update Strategies for Fine-Tuned Models
14 HoursBuổi đào tạo trực tiếp dưới sự hướng dẫn của giảng viên tại Việt Nam (trực tuyến hoặc trực tiếp) này dành cho các kỹ sư bảo trì AI cấp cao và chuyên gia MLOps muốn triển khai cácpipeline học tập liên tục vững chắc và các chiến lược cập nhật hiệu quả cho các mô hình đã được tinh chỉnh và triển khai.
Tại kết thúc buổi đào tạo, người tham dự sẽ có khả năng:
- Thiết kế và triển khai quy trình làm việc học tập liên tục cho các mô hình đã triển khai.
- Giảm thiểu tình trạng quên thảm họa thông qua việc huấn luyện đúng cách và quản lý bộ nhớ.
- Tự động hóa theo dõi và kích hoạt cập nhật dựa trên sự dịch chuyển của mô hình hoặc thay đổi dữ liệu.
- Hoàn thiện chiến lược cập nhật mô hình vào các pipeline CI/CD hiện có và MLOps.
Deploying Fine-Tuned Models in Production
21 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này tại Việt Nam (trực tuyến hoặc tại chỗ) dành cho các chuyên gia nâng cao mong muốn triển khai các mô hình đã được tinh chỉnh một cách đáng tin cậy và hiệu quả.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu được những thách thức của việc triển khai các mô hình đã được tinh chỉnh vào môi trường sản xuất.
- Đóng gói và triển khai các mô hình bằng các công cụ như Docker và Kubernetes.
- Triển khai giám sát và ghi nhật ký cho các mô hình đã triển khai.
- Tối ưu hóa các mô hình để giảm độ trễ và khả năng mở rộng trong các tình huống thực tế.
Domain-Specific Fine-Tuning for Finance
21 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này (trực tuyến hoặc tại chỗ) dành cho các chuyên gia ở trình độ trung cấp, những người muốn có được các kỹ năng thực tế trong việc tùy chỉnh các mô hình AI cho các tác vụ tài chính quan trọng.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu các nguyên tắc cơ bản của việc tinh chỉnh cho các ứng dụng tài chính.
- Tận dụng các mô hình được huấn luyện trước cho các tác vụ cụ thể trong lĩnh vực tài chính.
- Áp dụng các kỹ thuật để phát hiện gian lận, đánh giá rủi ro và tạo ra các lời khuyên tài chính.
- Đảm bảo tuân thủ các quy định tài chính như GDPR và SOX.
- Triển khai bảo mật dữ liệu và các thực hành AI đạo đức trong các ứng dụng tài chính.
Fine-Tuning Models and Large Language Models (LLMs)
14 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này (trực tuyến hoặc tại chỗ) dành cho các chuyên gia từ trung cấp đến cao cấp, những người muốn tùy chỉnh các mô hình được huấn luyện trước cho các tác vụ và tập dữ liệu cụ thể.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu các nguyên tắc của việc tinh chỉnh (fine-tuning) và các ứng dụng của nó.
- Chuẩn bị tập dữ liệu để tinh chỉnh các mô hình được huấn luyện trước.
- Tinh chỉnh các mô hình ngôn ngữ lớn (LLMs) cho các tác vụ Xử lý ngôn ngữ tự nhiên (NLP).
- Tối ưu hóa hiệu suất mô hình và giải quyết các thách thức phổ biến.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này (trực tuyến hoặc tại chỗ) dành cho các nhà phát triển và chuyên gia AI ở trình độ trung cấp, những người muốn triển khai các chiến lược tinh chỉnh cho các mô hình lớn mà không cần tài nguyên tính toán lớn.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu các nguyên tắc của Low-Rank Adaptation (LoRA).
- Triển khai LoRA để tinh chỉnh hiệu quả các mô hình lớn.
- Tối ưu hóa việc tinh chỉnh cho các môi trường hạn chế về tài nguyên.
- Đánh giá và triển khai các mô hình đã được tinh chỉnh bằng LoRA cho các ứng dụng thực tế.
Fine-Tuning Multimodal Models
28 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này tại Việt Nam (trực tuyến hoặc tại chỗ) dành cho các chuyên gia nâng cao mong muốn làm chủ việc tinh chỉnh mô hình đa phương thức để tạo ra các giải pháp AI sáng tạo.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu kiến trúc của các mô hình đa phương thức như CLIP và Flamingo.
- Chuẩn bị và tiền xử lý các tập dữ liệu đa phương thức một cách hiệu quả.
- Tinh chỉnh các mô hình đa phương thức cho các tác vụ cụ thể.
- Tối ưu hóa mô hình cho các ứng dụng và hiệu suất trong thế giới thực.
Fine-Tuning for Natural Language Processing (NLP)
21 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này tại Việt Nam (trực tuyến hoặc tại chỗ) dành cho các chuyên gia ở trình độ trung cấp, mong muốn nâng cao các dự án NLP của họ thông qua việc tinh chỉnh hiệu quả các mô hình ngôn ngữ được huấn luyện trước.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu các nguyên tắc cơ bản của việc tinh chỉnh cho các tác vụ NLP.
- Tinh chỉnh các mô hình được huấn luyện trước như GPT, BERT và T5 cho các ứng dụng NLP cụ thể.
- Tối ưu hóa các siêu tham số để cải thiện hiệu suất mô hình.
- Đánh giá và triển khai các mô hình đã tinh chỉnh trong các tình huống thực tế.
Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection
14 HoursThis instructor-led, live training in Việt Nam (online or onsite) is aimed at advanced-level data scientists and AI engineers in the financial sector who wish to fine-tune models for applications such as credit scoring, fraud detection, and risk modeling using domain-specific financial data.
By the end of this training, participants will be able to:
- Fine-tune AI models on financial datasets for improved fraud and risk prediction.
- Apply techniques such as transfer learning, LoRA, and regularization to enhance model efficiency.
- Integrate financial compliance considerations into the AI modeling workflow.
- Deploy fine-tuned models for production use in financial services platforms.
Fine-Tuning AI for Healthcare: Medical Diagnosis and Predictive Analytics
14 HoursThis instructor-led, live training in Việt Nam (online or onsite) is aimed at intermediate-level to advanced-level medical AI developers and data scientists who wish to fine-tune models for clinical diagnosis, disease prediction, and patient outcome forecasting using structured and unstructured medical data.
By the end of this training, participants will be able to:
- Fine-tune AI models on healthcare datasets including EMRs, imaging, and time-series data.
- Apply transfer learning, domain adaptation, and model compression in medical contexts.
- Address privacy, bias, and regulatory compliance in model development.
- Deploy and monitor fine-tuned models in real-world healthcare environments.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HoursKhóa đào tạo trực tiếp, do giảng viên hướng dẫn này (trực tuyến hoặc tại chỗ) dành cho các nhà nghiên cứu AI nâng cao, kỹ sư học máy và nhà phát triển mong muốn tinh chỉnh các mô hình LLM DeepSeek để tạo các ứng dụng AI chuyên biệt, phù hợp với các ngành, lĩnh vực hoặc nhu cầu kinh doanh cụ thể.
Khi kết thúc khóa đào tạo này, người tham gia sẽ có thể:
- Hiểu kiến trúc và khả năng của các mô hình DeepSeek, bao gồm DeepSeek-R1 và DeepSeek-V3.
- Chuẩn bị bộ dữ liệu và tiền xử lý dữ liệu để tinh chỉnh.
- Tinh chỉnh LLM DeepSeek cho các ứng dụng cụ thể theo lĩnh vực.
- Tối ưu hóa và triển khai các mô hình đã tinh chỉnh một cách hiệu quả.
Fine-Tuning Defense AI for Autonomous Systems and Surveillance
14 HoursThis instructor-led, live training in Việt Nam (online or onsite) is aimed at advanced-level defense AI engineers and military technology developers who wish to fine-tune deep learning models for use in autonomous vehicles, drones, and surveillance systems while meeting stringent security and reliability standards.
By the end of this training, participants will be able to:
- Fine-tune computer vision and sensor fusion models for surveillance and targeting tasks.
- Adapt autonomous AI systems to changing environments and mission profiles.
- Implement robust validation and fail-safe mechanisms in model pipelines.
- Ensure alignment with defense-specific compliance, safety, and security standards.
Fine-Tuning Large Language Models Using QLoRA
14 HoursBuổi đào tạo trực tiếp dưới sự hướng dẫn của giảng viên tại Việt Nam (trực tuyến hoặc trực tiếp) này dành cho các kỹ sư học máy cấp trung đến cao, nhà phát triển AI và nhà khoa học dữ liệu muốn tìm hiểu cách sử dụng QLoRA để hiệu chỉnh mô hình lớn một cách hiệu quả cho các tác vụ cụ thể và tùy chỉnh.
Tại kết thúc buổi đào tạo này, người tham gia sẽ có khả năng:
- Nắm vững lý thuyết đằng sau QLoRA và kỹ thuật lượng tử hóa cho các mô hình ngôn ngữ lớn (LLMs).
- Thực hiện QLoRA trong việc hiệu chỉnh các mô hình ngôn ngữ lớn cho các ứng dụng chuyên ngành.
- Tối ưu hóa hiệu suất hiệu chỉnh trên tài nguyên tính toán hạn chế bằng cách sử dụng lượng tử hóa.
- Triển khai và đánh giá các mô hình đã được hiệu chỉnh một cách hiệu quả trong các ứng dụng thực tế.
Fine-Tuning Lightweight Models for Edge AI Deployment
14 HoursBuổi đào tạo trực tiếp dưới sự hướng dẫn của giảng viên tại Việt Nam (trực tuyến hoặc trực tiếp) này dành cho các nhà phát triển AI nhúng cấp trung và chuyên gia về tính toán biên muốn tinh chỉnh và tối ưu hóa các mô hình AI nhẹ để triển khai trên các thiết bị có nguồn lực hạn chế.
Tại kết thúc buổi đào tạo, người tham dự sẽ có khả năng:
- Chọn và điều chỉnh các mô hình đã được đào tạo trước phù hợp cho việc triển khai tại biên.
- Áp dụng lượng tử hóa, cắt giảm và các kỹ thuật nén khác để giảm kích thước mô hình và độ trễ.
- Tinh chỉnh mô hình bằng cách sử dụng học chuyển giao để cải thiện hiệu suất cho công việc cụ thể.
- Triển khai các mô hình đã được tối ưu hóa trên các nền tảng thiết bị biên thực tế.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 HoursBuổi đào tạo trực tiếp dưới sự hướng dẫn của giảng viên tại Việt Nam (trực tuyến hoặc trực tiếp) nhằm vào đối tượng là các chuyên gia ML ở mức trung cấp và các nhà phát triển AI muốn tinh chỉnh và triển khai các mô hình có trọng số mở như LLaMA, Mistral, và Qwen cho các ứng dụng kinh doanh cụ thể hoặc nội bộ.
Tại kết thúc buổi đào tạo này, người tham gia sẽ có khả năng:
- Hiểu rõ hệ sinh thái và sự khác biệt giữa các mô hình AI nguồn mở.
- Chuẩn bị dữ liệu và cấu hình tinh chỉnh cho các mô hình như LLaMA, Mistral, và Qwen.
- Thực hiện quy trình tinh chỉnh sử dụng Hugging Face Transformers và PEFT.
- Đánh giá, lưu trữ và triển khai các mô hình đã được tinh chỉnh trong môi trường an toàn.